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ABSTRACT

In this thesis, the use of the Wentzel-Kramers-Brillouin (WKB) Theory to obtain the
solution to the Helmholtz Equation governing the acoustic normal modes is examined.

Specifically, uniformly valid WKB solutions for four classes of acoustic normal modes

in the ocean are derived and the accuracy of the WKB approximation is tested against
some exact solutions. It is found that this inherently high frequency technique has an

appreciable accuracy even at a frequency of I Hz. A product of this thesis is a computer

program that solves for the WKB modes for an arbitrary sound speed profile.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not

have been exercised for all cases of interest. While every effort has been made, within
the time available, to ensure that the programs are free of computational and logic er-

rors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.
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1. INTRODUCTION

A. BACKGROUND

To model sound propagation in the ocean we can use several theories, namely Ray

Theory, Parabolic Equation Approximation and Normal Modes. The Ray Theory sol-

ution is an asymptotic geometric-optics solution, obtainable using simple ray tracing

techniques. It provides a simple physical description on how sound is transmitted

underwater. However, it neglects sound diffraction and thus needs corrections near

caustics and turning points. Such corrections can be very complicated mathematically.

The Parabolic Equation method is less physical but is a full-wave solution. An asset of

Parabolic Equation is its capability to handle variable bottom bathymetry well. Its liin-

itation is that it does not accurately model sound energy propagating in steep angles.

Normal Mode Theory gives a physical full-wave solution to the wave equation. It has

some computational difficulties in handling range varying sound speed fields.

A computational difficulty associated with normal mode models applied to a range-

dependent ocean is that the normal modes associated with a great number of profiles

must be computed and the results stored. Large storage and processing time are re-

quired if straight-forward numerical methods such as finite differences are used to com-

pute the normal modes (Chiu and Ehret, 1990). The use of finite differences methods

requires the discretized mode functions and their eigenvalues at a great number of points

to be stored. Moreover, at high frequencies these methods require the computation of
eigenvectors and eigenvalues of large matrices, which can result in significant increases

of processing time and numerical noise in the solution. In this thesis we examine an

asymptotic expansion method that has the potential to overcome this difficulty. The

method is called Wentzel-Kramers-Brillouin (WKB) theory.

B. THE NORMAL MODE APPROACH

The wave equation governing the sound pressure p in the ocean is

2

where c = c(z; r, 0) is the sound speed and z is the vertical coordinate, r the range and 0

the azimuthal angle. In the three-dimensional coupled mode model of Chiu and Ehret



(1990), the pressure is expressed as a linear combination of the local normal modes Z.

such that

00

p(r, 0, z) = IZ(z; r, O)P (r, O)T(i)

For a harmonic frequency time dependence

T(r) = el Oil

where (o is the acoustic angular frequency, the local modes at each horizontal location

(r, 0) are required to satisfy

2a 2 Z1_ + 2 K2]Zn = 0

and the appropriate boundary conditions. This equation is usually known as the

Helmholtz Equation. The constant K, is the horizontal component of the wavenumber

vector whose magnitude is given by

c

In general, there are many possible values of ic, (cigenvalues) satisfying the Helmholtz

Equation. For each iK, there is an associated mode Z,, (eigenfunction). In a range-

dependent sound speed field this eigenvalue-eigenfunction problem must be solved at a

great number of horizontal grid points.

C. THESIS OBJECTIVES AND OUTLINE

The main objective of this thesis is to examine the use of the WKB theory to solve
the Helmholtz Equation governing the acoustic normal modes. This includes:

1. the development of the various WKB formulae for the four classes of normal modes
which can exist in single duct/channel environments,

2. the parameterization of each class of normal modes using a minimum number of
parameters,

3. the quantification of errors in the WKB solution through comparisons to three
exact solutions.

A product coming out of this thesis is a computer program solving for the mode

parameters for an arbitrary sound speed profile. The incorporation of this code in the

2



three-dimensional coupled mode model of Chiu and Ehret (1990) is expected to result in

significant savings of processing time and computer storage.

In Chapter 11, the WKB formulae are developed. The four types of normal modes

are discussed. In Chapter Ill, the normal modes and their eigenvalues for three abstract

sound speed profilcs are solved exactly. The WKB results are then compared to the exact

solutions for an error analysis. Conclusions are given in Chapter IV.

3



11. WKB NORMAL MODES

A. FIRST ORDER WKB APPROXINIATION

1. The Mathematical Problem

The WKB approximation to the solution of a differential equation is an

asymptotic expansion method applicable to a large range of equations. It is named after

Wentzel, Kramers and Brillouin who used it separately but at about the same time in

1926. However the principle of this technique was developed by Liouville and Green in

1837. It was also used by Rayleigh (1912), Gans (1915) and Jeffreys (1924), among oth-

ers. The WKB method is also known as the Liouville-Green or WKBJ approximation

(the letter J is used to honour Jeffreys' contribution).

To compute the acoustic normal modes the equation to be solved is the

Helmholtz Equation

d 71. +KZ =0()
d: 2 n 

(

where

2
2 W2- 2

C

is the vertical wavenumber, Z, is the n" normal mode, z is the vertical coordinate, co the

acoustic angular frequency, c= c(z) the sound speed and K, the horizontal wavenutnber.

With a pressure release surface and a rigid bottom the appropriate boundary conditions

are

Zn = 0 at the surface (2)

dZ,
= 0 at the bottom . (3)

dz

Normal modes subjected to general boundary conditions are discussed in Appendix B.

Note that, in (1) through (3), we have supressed the dependence in range which has no

effect on the local modes. Equation (1), together with (2) and (3), is a Sturm-Liouville

4



problem where the Z,'s are the eigenfunctions and the K,'s are the eigenvalues. The

eigenfunctions can be normalized using a normalization constant C, such that

= CI4)

where

f ZnZmdz = nM (5)

Note that the integration is over the entire depth in (5), 6,, is the Kronecker Delta, and

Z, and Z, are orthogonal for n * in.
There are several ways to obtain the first order WKB solution. A physical ap-

proach is to consider Iiie transmission of plane waves through a layered medium. The

WKB solution is obtained as we let the the layer thickness approach zero. This physical

approach will be discussed next.

2. Physical Approach

In each isospeed layer the solution to the I lelmholtz Equation is given by

?I 0C e Zn( "

where K,, is the vertical wavenumber in the j,' layer. The transmission coefficient from

layer j to layer j + 1 is given by (Kinsler et al., 19S2)

T =j+= 2 j+

or

ITjj+ I I AK

1+2 K/

where AKJ,, -'- - With K <I we get''In " 'f° Zn

M et n )

By letting IZ, I I we have

5



,j-I j-J

(fJT ±LZznZe - 2 Z C ZZK nZ

where Z,. is the value at the interface of the jP layer and the (j + 1),' layer and Az., is the

thickness of the mn'h layer. Taking the thickness of the layers to zero we have

.f ~d
Z'(z) =e- 2 J z ,e±Jrn

or

Z" (Z) e~ioZ.(z)- _.

V IKZn

where K, is the vertical wavenumber at z z and

~=JI K Idz

The vertical wavenumber K, generally can take on real or imaginary values. If

K , is real, i.e., K' > 0, the solution is

v' K
2z

or

a cos 4+b sin 4 (6)Z (z) -=z-- 6

where a' and b' or a and b are constants to be determined by normalization and the

boundary conditions. On the other hand if K,, is purely imaginary, i.e., K' < 0, we have

Z,()aeo +be - 0
Z (z) = a(7)

6J :



These last two formulae are precisely the WKB solution to the llelmholtz Equation in

regions not close to a point where K,, = 0 (i.e., a turning point).

3. Basic Forinulac

By substituting the WKB solutions (6) or (7) in the Helmholtz Equation, one

can easily show that they are exact solutions if

3 I ( dKn )2_! d'K7  0
4 4 dz} 2 K 3 dz 2

Therefore, if I r(z) IlI the WKB solutions (6) and (7) are good approximations to the

exact solution for K > 0 and K' < 0, respectively. In Appendix A a more detailed and

mathematical derivation of the WKB solution and its validity is presented. Let us call

these solutions the first order WKB approximation. But (6) and (7) are not valid when

K = 0 (i. e., at a turning point) or even in a region where K' - 0. We need a solution

valid at and near the turning point (i.e., in the critical region) to make the liaison be-

tween the oscillatory region (K'>0) and the exponential region (K',0).

Let us suppose that there is a turning point at z= 0 and K4n > 0 for z > 0 and

K < 0 for z < 0. Consistent with a first order approximation, let us assume that near the

turning point K' = yz where

7= dz Z=O

With a change of coordinate

the Helmholtz Equation becomes

d2 Z0

which is the Airy Equation with the general solution given by

ZJ(0 = aAi(I")+bBi( .)

The Airy Functions can be expressed as, with > 0,



Ai(- ) -- J-3 3/2)J ( -- 2

Bi(_~)= +[:13 ( ) .32)( 2 .3 12)]

S[ 3 )- ')( 3 - )]

Bi(.) = - ['-3/( 2 (3/)+,( 2 r312)]

where J's are Bessel Functions and l's are Modified Bessel Functions.

Now we have a complet set of first order approximate solutions covering the

entire range of K2. Summarizing, we have:

(a) in the oscillatory region (K'>0)

Z,(z) a, sin 4+bl cos 0 (8)
%' Kzn

(b) in the critical region (K' - 0)

2Kzn =- YZ

= _ 1/3z

Z,(z) = a2Ali(S)+b 2Bi() (9)

(c) in the exponential region (K'«<0)

a3(2 +b3e
Z(z) = (10)

I K2? I

To assure continuity in Z,(z) at the boundaries between regions, we must relate

the constants a, and b, carefully. An asymptotic expansion of the critical region solution
for large positive values of K (or - > 1) must match the solution in the oscillatory re-

gion and for large negative values of K' (or C > 1) must match the solution in the expo-

nential region. The connection formulae between the three regions are given by



! e - 0 ' Iz
_ -4- e4i()sin(+

-Ii :I 2~ KZn

1 r )

\ KZn N I Kr,

where the left sides match the Airy Functions for K' <0 and the right sides match for

K,>0 (Bender and Orszag, 1978) with

Therefore, (8), (9) and (10) can be recast respectively as

(a) oscillatory region solution

a sin(d+ -L )+b cos(k+ -2)
Z.(z) = , (11.a)

(b) critical region solution

Z(z) = aaAi(%)+baBi( ) (I L.b)

(c) exponential region solution

(a2e¢+be

; I K .1  I

The constants K, a and b are determined by normalization and the boundary

conditions. The equations for the eigenvalues K,,, i.e., the characteristic equations, in-

volve the solution in the oscillatory region (I1 .a), as will be discussed later.

Equations (I l.a,b,c) are not easy to use in the computation of normal mode

shapes. Where does one stop with one formula and start with another? This problem is

avoided if, after the determination of the eigenvalue K, and the constants a and b, the

computation of the normal mode is done using the Langer Formula (Nayfeh, 1973:

Bender and Orszag, 1978)

Zf~z=2/~(~~ ~III ,-- {_iL '0 ~) 2I3+bBi Syj_ )2I3]1 (12)

9



with

O=f IK2,,Idz

and

s =-zIlz I

This formula has the advantage of giving a single and continuous solution for the entire

range of K'. Bender and Orszag (197S) have shown that for K, - 0 and K, = Yz the

formula gives exactly (I L.b), for i,>0 it asymptotically approaches (I1 .a) and for K1,<0

it approaches (I1 .c).

In rectrospect, in order to obtain the first order WKB solution, an algorithm

must include the following stcps:

(a) application of a boundary condition to (I l.a,b,c) to get the relationship

between the constants a and b;

(b) application of the other boundary condition to (1 l.a) to get the character-

istic equation;

(c) with (12) compute Z,(z);

(d) with (4) and (5) normalize Zjz).

4. Comments

The WKB solution is a high frequency approximation. This means that it gets

better as the frequency gets higher. It must be noted that, although Normal Modes are

a full-wave exact solution to the wave equation, the WKB modes are approximate sol-

utions and their accuracy is frequency dependent.

B. DETERMINATION OF WKB MODE PARAMETERS

Now that we have a uniformly-valid first order solution to the Helmholtz Equation,

we are ready to apply the boundary conditions to get expressions for the K,'s and the

constants a and b (or their equivalents). There are four classes of normal modes to

consider. Each class has different mathematical expressions for the mode parameters (a,

b, or their equivalents, and K,). Therefore, for an arbitrary sound speed profile the first

procedure for normal mode calculation is to determine which class each mode falls into

and then go through the steps described at the end of the previous section.

10



1. General NNKB Forniulae

We start by deriving the more general formulae which are applicable to modes

that do not have turning points in close vicinity of the boundaries.

a. Class L: Pressure Release - Turning Point

First let us consider a mode whose oscillatory region is bounded by a turn-

ing point at the depth z = z and the surface (z = 0). With the bottom at z = 1t, the

boundary conditions are

Zn(o) = 0 (13)

d -o (14)

We will call this class of modes as PR-TP (Pressure Release - Turning Point).

In the exponential region (k. z M H), the WKB solution can be recast as

cosh(O-b)Z" c (15)

with

f;k JIK2 I dz.

In order to satisfy the boundary condition (14). 4), must be given by

b  H I Kzn Idz- tanh- ( 2K.] 2 d[Kz I

We need to connect (15) to the solutions in the critical and oscillatory regions next. After

application of the connection formulae, the results in the three regions are:

(a) exponential region

Z' cosh(O-0b) ,(16.a)

%/ I K2,

(b) critical region

K2

11



zn = e OAi(3)+( , (16.b)
2

(c) oscillatory region

with

4' =JI KnIdz

in this region. The corresponding Langer Formula that asymptotically matches

(16.a,b,c) is

Z, 2 7( 1/)16 1 tebA~ !0111 iS1 3 (7

with

Z-_zIz-zI

and

= f I Kz,,lI z.
z

As the oscillatory region solution must satisfy the surface boundary condi-

tion, we have

cos Kzndz+ . + sin K,,dz+ 0 (18)
2 VKzn 0fo 4 0 fz

or

12



This is the characteristic equation for PR - TP normal modes. The solutions to the

characteristic equation give the eigenvalues K,'S.

b. Class II: Turning Point - Rigid Bottom

The next class of normal modes to be considered has the oscillator' region

between a turning point and the bottom. It will be called TP-RB (Turning Point - Rigid

Bottom). For this class, let us express the solution in the exponential region, 0 < z,,

as

z' I sinh(0-0,)

with

0) = K I dz

and

I0&---IKnldz.

Using the connection formulae, we get for the three regions:

(a) Exponential Region

Z' - - sinh(0-4s)
4I K2n

(b) Critical Region

2 ^

- }'(Z-Z)

-- -yt 3(z-2)

Z" = eOaAi(C)- e -1Bi(3)

13



(c) Oscillatory Region

-e 6+ (- (19)

\' K 2 n 2.\ Kzn

with

f 2 Kzn I dz

2

in this region («,<z < H). The appropriate Langer Formula for this class is

where

A

and

!k fKz, Idz.
2

Equation (19) must satisfy the bottom boundary condition (14), therefore, we have

IS," (o°+ L e-0),
sin [JKdz+4 + tan-( 2 =0 (21)

1f;H 4 ~ e-q"-D"

2

where

( i d 2  =-u
2 dz n 2H (22)

It follows from (21) that the characteristic equation for TP - RB is

14



4 e-¢

S-Deo
,

for D < 0, and

eo D e -01
Kzdz= (n--5 7-tan-( e'+- 

e "' Deol
2

for D>0.
c. Class II: Turning Point - Turning Point

The third class of modes has the oscillatory region between two turning
points, at z = 2' and z = '2 with z 1 < 2. They will be refered as TP-TP (Turning Point -

Turning Point).
Let us express the solution in the exponential region near the surface,

O z<z,.-,, as

Z - Cl sinh(O -0,)

where

7=JKzn I dz

and

= f01 I Kzn I dz,

and the solution in the exponential region near the bottom, 12«z < H1, as

= C2  cosh(o4-Ob)

with

15



2f

and

5b=jI zn I dz- tanh -I dl K2 nI z=H

In addition, let us express the solution in the critical region centered at z =1 as
Cl ~

Zn= cje'oaAi(,I)- S e-O'ajBi(g1) (23)

w ith

2

-" -1/6

and

and in the other critical region, centercd at z = Z2, as

Z, c2e4 ba2"1i(;2)+ C2 e * b 2 Bi(2) (24)

with

2Kz -Y2(z2-z),

'- -1/6
ar2  N/ ,/ Y2

and
I/3 ^

2= -- 2  z2-z)"

By letting

16



1

C' e20+ e - 2 0'

4

and connecting (23) to the solution in the oscillatory region zi<z4z2, we get

v Kzn(25)

where

Z1

and

a= tan-'( e- '
k 2e~

Note that, in obtaining (25), the trigonometric identity

a cos O+b sinO- \/a'+b2 sin O+ tan- b (26)

has been used. In the same way, by letting

I
C2 -

e 2 b+ -2

and connecting (24) to the oscillatory region solution we get

Zn = sin(02 + -L- +a,) (27)
Nt" K2n

where

17



and

02 = tan-I 2e0I

Realizing that the two solutions, (25) and (27), in the oscillatory region
must be identical, we obtain

sin(+ - )= sin(02 +~ +a,) .(28)

Using (28), the characteristic equation for this class of normal modes is obtained:

K,,z (n- ±L ) C 01 2

21

To compute the normal mode we can use (20) for z s 2, and (17) for z -_ 12.
d. Class IV: Pressure Release - Rigid Bottom

Finally, we must consider modes having no turning points. We call this class
PR-RB (Pressure Release - Rigid Bottom). Here we express the solution, which is always

oscillatory, as

a I'
Z,) e sin b+ _ co 4)(29)

' KZn N K,.

with

fo
0) ='I K,,, IdZ

Since the surface boundary condition must be satisfied, we must have b = 0, and hence

n - I sin (30)
Vl Kzn

On the other hand, (30) must satisfy the bottom boundary condition (14) and this leads
to the characteristic equation equation for the PR - RB modes:

18



Kzndz = nir-- tan - (
for D > 0, and

OKzndz = nir+ tan-'("-')

for D < 0, where D is given in (22).

2. Formulae Associated With Near-Boundary Turning Points

In our derivation of the formulae in the previous section, we have applied the

boundary conditions to the oscillatory or exponential region solutions, assuming that the

boundaries are nowhere close to any turning point. In the special case that a boundary

lies inside a critical region, the respective boundary condition must be applied to the

critical region solution instead. Different formulae associated with the first three classes

of modes for this special case will be derived next.

a. Class I

PR - TP modes have lower turning points. Since the solution in the critical

region must now satisfy the bottom boundary condition we obtain

Z, = Bi'( 'H)aAi( )-Ai'G(/)aBi(s)

where

V_ / y'13(H-2)

and

dz

Ai' and Bi' are the derivatives of the Airy Functions with respect to { and are defined

by (with 2 >0)

Ai'(-) = - / 2 32) i 2 3' 2)]

19



Bi'(- ~ ~ 2 = !{J (. jI)+ ( C312)]

Bi'(-C) I [J-2/3 " 3 +J213 ( 3!
T43

31 , 3 )-2'\ 3,

Bi(O) C[ 23 _ 32 323 L C /)

Defining

A1 = Bi'(C,1 )

and

B1 =Ai(

and applying the connection formulae, the solution in the oscillatory region becomes

Zn , ! sin 4,+_) B, Cos €

V Kzn

An application of the surface boundary condition gives the following characteristic

equation:

K,,dz nf- 4 r+tanl-0-'~)

b. Class II

TP - RB modes have upper turning points. To satisfy the surface boundary

condition, we require the solution in the critical region to vanish at the surface, i. e.,

Z. = Bi( s)aAi()-Ai(Cs)aBi(C)

with

Cs=y13

and
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Defining

A2 = Bi(s)

and

B2 = A i(s)

and applying the connection formulae, the solution in the oscillatory region becomes

A2  (p__7_"Z" = _sin +-- - cSos +-2-
NI'Kzn 4 Kzn

The subsequent application of the bottom boundary condition leads to the following

characteristic equation :

fKzndz = n- )n- tan-_(B 2+DB2
4 a B2-DA 2

for D < 0, and

JH = (- )7r- tan-( 2+DB2

f214

for D > 0, where D is defined in (22).

c. Class III

With the above results, we can easily that only two modifications in the

general formulae for TP - TP modes are required. These include replacing e, by A2 and
e-0., by B,, if the upper turning point is close to the surface, and e' by A, and - e- b
2 b 2

by B1, if the lower turning point is near the bottom.

3. Criterion For Formulae Selection

We must define a criterion for switching from the general formulae to the for-

mulae associated with near-boundary turning points. It was found by Bender and

Orszag (1978) that the critical region extends on each side of the turning point until
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[ , 1 I . In accordance, we will use the general formulae unless the distance between a

turning point and a boundary corresponds to values of I [ smaller than 1.

4. Normalization

Once normal mode parameters are computed using the appropriate formulae

including the characteristic equations, the normalization of the normal modes can be

achieved by numerical integration over depth. The normalized modes (Z's) are related

to the Z, 's by

Z1.= c zI

with

2 jL lI4
"

5. Parameter Storage

We now define the necessary parameters required to completely characterize

each mode. The first parameter is obviously the class number. By checking the formulae

developed in the previous sections it is seen that all the constants (0,, 0 , D, etc.) can

be computed from the horizontal wavenumber, the depths of the turning points and the

depth of the ocean. Therefore, the parameters required to parameterize each class of

modes are:

a. Classes I And 11

1. Class number

2. Horizontal wavenumber

3. Normalization constant

4. Depth of the turning point

b. Class III

1. Class number

2. Horizontal wavenumber

3. Normalization constant

4. Depth of the upper turning point

5. Depth of the lower turning point



c. Class IV

1. Class number

2. Horizontal wavenumbcr

3. Normalization constant
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III. ACCURACY TEST

A. EXACT ANALYTICAL SOLUTIONS
To quantify the accuracy of the first order WKB approximation, we will compare

the WKB solutions to exact analytical solutions to the Helmholtz Equation for three
abstract sound speed profiles. The exact solutions are derived in this section. We use
as boundary conditions pressure release surface and rigid bottom for all three cases.

1. Positive Exponential Profile

In this upward refractive profile, sound speed increases exponentially with the

depth and is given by

c(z) = CoePZ

where P is a constant. The surface is at z = 0 and the bottom at z = H. The Helmholtz

Equation is

2 12dZ \(0 K1 =0
dz LXcoe

or

d 2Zn . 2 -2# 2 .-n
dZ-- +(Koe -- K,)Z -0 (31)dz2

with 0 C2 = c2
With a change of variable

-flz
--e

(31) becomes
2 d 2 dZn " 22_

flx -X (X d )+(K -K2)Z= o

After division by PIX2 and using

K0" (32)
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and

Kn?

n = " " ,(33)

we obtain

1 d ± k dZ, [ 2,/f'

This is the Bessel Equation and its general solution is

Zn = aJ ,(o).)+b Y,,(o) (34)

The boundary conditions are

(35)

dZ dZ(

z(z = H)-- (X=Y)=O(36)

The application of(35) and (36) to (34) results in two algebraic equations

aJ,(ri0)+b Y(%) = 0 (37)

aJ'a.(ooXH)+bY'.(O(XH) = 0 (38)

As this linear system of algebraic equations is homogeneous, there is a nontrivial sol-

ution only if the corresponding Jacobian is zero, i.e.,

J.,(a) Y',(,@oXH)-Y Y(ao)J%(aoxn) = 0

This characteristic equation must be solved in order to obtain the a.'s, which are the

scaled eigenvalues. After the ac,'s are evaluated, the K5's can be determined using (33). It

follows from the surface boundary condition, expressed in (37), that the specific solution,

aside from a multiplicative constant, is

Z(z) 0C Y(2)J".(ae-fZ-J (ao) "(a e -Z)

The constant of proportionality is given by normalization.
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2. Negative Exponential Profile

The second profile considered is a downward refractive one. Here, sound speed

decreases exponentially with depth and is given by

c(z) = coe -fi

Thus, the Helmholtz Equation is

d 2Zn 2 z 2-i- +(KOe -Kn)Z 0 (39)dz2

Cowhere K =--

With

and ao and a, given by (32) and (33) respectively, (39) can be recast as

I d ( dZ11 )+ ,_ CY2n)
7 - +  0 = (40)

The general solution to (40) is

Z, = aJ,, (ao )+b Y,(o )

Using the same anology as in the previous case, we obtain as characteristic

equation

J,(o) Y' (o H)- Y2 @o)J'2(o H) = 0 (41)

and specific solution

Z.(z) oc Y,, (%)J , (aoe#Z)-J .(ao) Y3.(aoe z)

The K,'S can be found using (33) after solving (41) for the a,'s.

3. Hyperbolic Profile

In this third case we assume that the sound speed has a minimum at z = z0. The

sound speed profile is

c(z') = co cosh(flz')
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with

Z' = z-z 0

The Helmholtz Equation to be solved is now

z +[( 2 1 KZ=O (42)
dz2 c0o cosh 2((fJz,) n

With the following change of coordinates

x = tanh(flz')

(42) becomes

fl2(lx 2) d(I_-X2) -' ]+[K2(l-x_2)K 2]Z- 0 (43)

After dividing (43) by fl2(l-x 2 ) and using the definitions given in (32) and (33), (43) can

be recast as

d-7 (1-Y)--n ] + (a2_ - z=o (44)

This is the Associated Legendre Equation. The general solution to (44) is

= aP'(x)+bQ'(x)

with

and

V(V+ 2

The functions P.(X) and Q.(x) are the Associated Legendre Functions of the first

and second kind of order 1A and degree v . Applying the boundary conditions we get the

system of equations

aPI (xs)+bQ (y s) = 0 (45)
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aP'4(xtt)+bQ (yu) = 0

with

ys = tanh(-flzo)

and

XH = tanh[/3(H-z 0 )]

Thus, the corresponding characteristic equation is

P, (XS)Q ,(Xln)-Q (,Ys)P '(XH) = 0 . (46)

Solving (46) for p gives the eigenvalues a, 's and hence the horizontal wavenumbers

ic,, 's. Using (45) the solution becomes
Z,,(') cc I(XSP" tah fz )-P, n(ysQ

Z, z' oc Q ,()QP ( an tanh flz')

B. ANALYTICAL EVALUATION OF WKB PHASE INTEGRALS AND

DERIVATIVES
Now we use the WKB formulae to obtain the first order WKB solution for the three

analytical sound speed profiles. The objective in this section is to evaluate analytically

all the related WKB integrals and derivatives so that numerical errors can be eliminated

in one of the error analysis. Horizontal wavenumbers computed using both the exact and

approximate (i.e., WKB) characteristic equations will be compared in the next section.

The evaluation of the horizontal wavenumbers is emphasized because they are the key

parameters in normal mode computations.
1. Positive Exponential Profile

The vertical coordinate z is positive downward, the surface is at z = 0 , the bot-

tom at z = H and the sound speed profile is

c(z) =CoePZ

With

(1)

K 0 = C

the corresponding wavenumber profile is
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-Plz
K -= Koe

Let us first consider modes that have a turning point at z = r. ror 0 <z 
(oscillatory region), K., is given by

/-2#z y2
Kzn = KO\/e -yn

with

K
n

Yn- Ko

The spatial phase 4 in this region is given by

4= IKznIdz (47)

With the change of coordinate

-2#z

(47) becomes

[),24= 'I' ,tan 'F -Y

In the region i < z < H (exponential region), we must use
I i 1 2 2 -2/Pz

The spatial phase is now

or, with

flz
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[.'jI _y,,In
_--I yn2 -Yn In -'(

We must also compute

21 K,, 12 dz n

which can be equated as

2 (K 2 2 e -2PH)3/2

Figure 1 shows a PR - TP mode in this upward refractive medium.
If the normal mode is PR-RB the phase is given by

,0 = I K2  I dz

or

= [y0 tan-' X n ]_ ,J y

with

X(z) e-2 z

and

K~fl e-21?-H

KO e2 (K2e-21lH .2.,) 3 /2
0'O'  -Kn)

For each case we must also apply the respective characteristic equation.

2. Negative Exponential Profile
For this profile we have two types of normal modes: TP - RB and PR - RB.

The sound speed is
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Figure 1. PR - TP Mode

C(z) Coe

Consequently, for a TP - RB normal mode and for z : 1 (oscillatory region) we have

So in this region the phase is
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with

=e

Also we have

D 2 (K 2 H ll \3 i2  (48)2 , (K2e 2H-K2)3j

In the exponential region (0 < z < ^),

/2 2,izI Kz? I = Ko -,-e

and thus the phase is

2_ e2 2(In
yn- "-y 1 in 1

- (z)

with

=ea

Figure 2 shows a TP - RB mode in such a downward refractive medium.

For a PR - RB normal mode we have

-y, tani

X(O)

and D is given by (48). Again, for each of the classes the respective characteristic

equation must be used.

3. Hyperbolic Profile

We consider two types of normal modes: TP - TP and PR - RB. For the type

TP - TP and in the oscillatory region (', < z < 1'2) the phase will be
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figure 2. TP - RB Mode

fjIK,, dz' .(49)

Using

=tanh(/7z')
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KO

and

2
2 Kn

nn 2
KO

(49) becomes

q C s- 2_ s i'n^

For the exponential region near the bottom (H_ z' 2 z' 2) the phase is

4, JiK^ndZ'

or

4 =-L-O In + 2 - +y, In i- yn )In _( l+ ) n

where

2
2 2 K,2

Yn = '177n
K0

For this type of normal mode D is given by

In the exponential region near the surface (P' > z') the phase is
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In - +Y, In 1 + -
2 L -2 2 - 2--"-2

I PN 1- - , -) I .+ n

If the mode is PR - RB tile phase will be

F=0 sn 1 iIj sin-'( ,~'~
=~ ~ 5il 1 ~ ~ l'n Sf 1 _2 Jj

and D is given by

2 2(1_ 2 23 /2

Figure 3 shows a TP - TP mode trapped by the refractive index.

C. COMPARISON OF RESULTS

1. Horizontal Wavenumber Error Analysis

The exact characteristic equations derived in section A for the three abstract

profiles were solved using iterative procedures to obtain the benchmark K. 's. Similarly,

the approximate WKB characteristic equations developed in the previous chapter were

also solved for the three profiles with the use of the algebraic equations developed above.

Very low frequencies were chosen for the comparison intentionally. This would give the

WKB method a real test, since WKB is inherently a high-frequency approximation. For

the exponential profiles, we used o = 10 s-1 or a frequency of 1.59 lIz. For the

hyperbolic profile the frequency used was even lower, it was 0.23 Hz. Some of the

computed horizontal wavenumbers (K,) are presented in Tables I through 5. The unit for

K, is inverse meter (m-1). The depth of the ocean is taken to be 10000 m.

In Tables I and 2 the exact and WKB results, as well as the absolute and relative

errors, for the positive exponential profile are displayed. Tables 3 and 4 show the results

for the negative exponential profile. In Table 5, the exact and approximate results for

the hyperbolic profile are compared. At 0.23 Htz, mode 2 is TP - TP and mode 3 is PR

-RB.

Overall, we can see that the absolute error (the absolute value of the WKB re-

sult minus the exact result) varies between 10-4 and 10-' n -1 and the relative error (the
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Figure 3. TP - TP Mode

absolute error divided by the exact value) varies between 10-2 and 10-1. It is noted that

for the modes with turning points not in close vicinity to the boundaries the absolute

error usually stays below 10- in - . The fact that the error increases when a turning

point is close to a boundary is easily explained. The solutions in the critical rcgions are
the less accurate because they use a linear approximation for K2. So when they are used

to match the boundary conditions the error increases.
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Table 1. POSITIVE EXPONENTIAL PROFILE, PR - TP MODES

Mode Exact K,, (tn-) WKB K. (M-') Absolute Relative
# Error (m- 1) Error

5 .43861 x 10-2 .43866 x 10- 1 5 x 10-' 1.1 x 10-4

6 .40441 x 10-2 .40445 x 10-2 4 x 10-' 1.0 X 10- 4

7 .37227 x 10-2 .37230 x 10-2 3 x 10-' .8 x 10-4

8 .34179 x 10-2 34182 x 10-2 3 x 10' .9 x 10-
4

9 .31274 x 10-2 .31277 x 10-2 3 x 10-' 1 x 10- 4

10 .28556 x 10-2 .28568 x 10-2 1.2 x 10-6 4.2 x 10- 4

Table 2. POSITIVE EXPONENTIAL PROFILE, PR - RB MODES
Mode Exact K, (M-') WKB K. (n - ') Absolute Relative

Error (m- 1) Error

12 .23190 x 10-2 .23041 x 10-2 1.5 x 10- 1 6.3 x 10- 1
13 .18524 x 10- 2 .18490 x 10-2 3.4 x 10- 6 1.8 x 10-3

14 .10756 x 10-2 .10736 x 10-2 2 x 10-6  1.9 x 10-s

Table 3. NEGATIVE EXPONENTIAL PROFILE, TP - RB MODES

Mode Exact K. (M-') WKB K, (n-1) Absolute Relative
4 Error (m-1) Error
23 .82307 x 10-2 .82308 x 10- 1 x 10-' 1 x 10-1
24 .79463 x 10-2 .79464 x 10-2 1 x 10-' 1 x 10-1

25 .76664 x 10-2 .76665 x 10- 2 1 x 10-' 1 x 10-1

26 .73903 x 10-2 .73904 x 10-2 1 x 10-' 1 x 10-1
27 .71158 x 10-2 .71155 x 10-2 3 x 10-' 4 x 10-1

In general, for each type of mode the WKB approximation gets better as mode

number increases. The only exception is when turning points are close to the boundaries.
To see this, let us examine the results for the positive exponential profile (Tables I and

2). Starting from the lowest modes that have one turning point, the error decreases as
mode number increases. At mode number 10, the accuracy of the WKB method de-
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Table 4. NEGATIVE EXPONENTIAL PROFILE, PR - RB MODES
Mode Exact , (rn-') WKB Kc. (M-') Absolute Relative

___Error (n-') Error

29 .65250 x 10-2 .65091 x 10 - 2 1.6 x 10-1 2.4 x 10-1
30 .61746 x 10-2 .61683 x 10-2 1.6 x 10-1 1.0 x 10-1
31 .57723 x 10-2  .57688 x 10- 2  3.5 x 10- 6  6.1 X 10-4

32 .53082 x 10-2 .53058 x 10- 2 2.4 x 10-6 4.5 x 10-'

33 .47670 x 10-2 .47652 x 10- 2 1.8 x 10-6 3.8 x 10-4

Table 5. HYPERBOLIC PROFILE

Mode Exact K,, (r -') WKB K, (in-') Absolute RelativeV Error (in-') Error

2 .90114 x 10- 3  .89881 x 10-1 2.3 x 10-6 2.2 x 10-1
3 .74139 x 10- 3  .72953 x 10- 3  1.2 x 10-1 1.6 x 10-2

creases because the turning point comes too close to the bottom boundary. For mode

12 and higher a turning point does not exist and the oscillatory region is bounded by the

physical boundaries. After the change of mode class the error starts to decrease again

as mode number increases.

Errors in the K,'s for all cases are small enough that they do not significantly

influence the vertically integrated phases 0 because the maximum ocean depth is of the

order of km's. In the horizontal direction the horizontal phase is approximately K,,r (this

phase is exact when c= c(z)). The error in K, limits the range for which the use of WKB

is accurate. If we want to keep the phase error below a few degrees, the tolerable error

in K,, is of the order of 10-5 in' for a range of 10 km, 10-6 n-1 for 100 km and 10-' r-'

for 1000 km. All the K,'s associated with the modes that do not have interactions with

the bottom boundary, as calculated from the WKB method, have errors less than

10- 6 in-', implying that the method is good to at least 100 km at I iz. For higher fre-

quencies the results would be much better.

2. Errors In The Interference Distances

The acoustic pressure square at far field can be written as (assuming no range

dependence)
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[p(rz))= r .4,,Z ,(:o)Z,;(z)+ ± Z inAmZ COS[(KmKn)r]

n---- n=-- M=

Men

where the A,'s are constants and the acoustic source is at z = z0 and r = 0 (Clay and

Medwin, 1977). We can see that the interference terms are functions of the differences
of horizontal wavenumbers. The interference distance (or interference wavelength) de-

fined by
Anm = 2

is therefore an important parameter for transmission loss calculation (Chiu and Ehret,

1990). In general, dominant interferences are between adjacent modes (Chiu and Ehret,
1990). So let us see what is the size of the errors in AK, = I K,.-.-K,,I computed using the
WKB approximation. In Tables 6 and 7 we display the exact and WKB AK,,'s, as well

as the absolute errors. As expected, we can see that the errors in AK, vary in a similar

way as in K, and are slightly smaller.

Table 6. POSITIVE EXPONENTIAL PROFILE, PR - TP MODES
n Exact AK, (m-') WKB AK,, (n -') Absolute Error

(in-')

5 .3420 x 10-1 .3421 x 10- 1 1 x 10-7
6 .3214 x 10-1 .3215 x 10- 1 x 10'

7 .3048 x 10- 3  .3048 x 10-, 0
8 .2905 x 10-1 .2905 x 10- 3  0
9 .2718 x 10- 3  .2709 x 10- 3  9 x 10-'

3. General Numerical Method

The WKB results in the previous section were obtained using analytical means

rather than numerical methods. The reason for that was we wanted to see how accurate

the WKB approximation is regardless of the numerical methods used to evaluate inte-
grals and derivatives. As we see, absolute errors in the order of 10-' m- 1 for the K,'s are

achieved at 1 Hz. This means that the WKB solution is very accurate, especially because
we used very low frequencies.
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Table 7. POSITIVE EXPONENTIAL PROFILE, PR - RB MODES
n Exact Kc inr-') WKB AK,, (n,2) Absolute Error

12 .4666 x 10-1 .4551 x 10-' 1.15 x 10-1
13 .7768 x 10-1 .7754 x 10-1 1.4 x 10-6

For an arbitrary profile all the integrations and differentiations must be done

numerically. It is expected that the errors will increase due to numerical noise. The

Fortran program WKBGEN (Appendix C) developed in this thesis can be applied to an

arbitrary profile. For each mode it finds class, horizontal wavenumber and depths of the

turning points. This program was also applied to the three abstract profiles. Some nu-

merical results for the K,'s are presented in Tables 8 through 11.

Tables 8 and 9 show the exact and numerical WKB results and the respective

absolute error, fnr the positive exponential profile. Tables 10 and 11 show to the cor-

responding r ."",.s for the negative exponential profile.

Table 8. POSITIVE EXPONENTIAL PROFILE, PR - TP MODES
Mode Exact K, (M-') WKB K, (m-') Absolute

___Error (m- 1)

5 .43861 x 10-2 .43874 x 10-2 1.3 x 10-6

6 .40441 x 10-2 .40454 x 10- 1 1.3 x 10-1

7 .37227 x 10-2 .37234 x 10- 2 7 x 10-'
8 .34179 x 10-2 .34184 x [0-2 5 x 10'
9 .312 74 x 10- 2 .31284 x 10-2 1 x 10-6

10 .28556 x 102 .28574 x 10-  1.8 x 10-6

As we can see, the errors in the K's computed using the numerical method are slightly

larger than the previous results (Tables 1 through 4) but are approximately in the same

order of magnitude.
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Table 9. POSITIVE EXPONENTIAL PROFILE, PR - RB MODES

Mode Exact K, (' ') WKB K, (in-,) Absolute
Error (in)

12 .23190 x 10-2 .23044 x 10-2 1.5 x 10-5

13 .18524 x 10-2 .18494 x 10-1 3.0 x 10-6

14 .10756 x 10-2 .107 44 x 10-2 1.2 x 10-6

Table 10. NEGATIVE EXPONENTIAL PROFILE, TP - RB MODES

Mode Exact K, (M-1) WKB K,, (M ') Absolute
44 Error (n-)

23 .82307 x 10- 2 .82309 x 10-2 2 x 10-'

24 .79463 x 10-2 .79469 x 10- 2 6 x 10-'

25 .76664 x 10-1 .76669 x 10-2 5 x 10'

26 .73903 x 10-2 .73909 x 10-2 6 x 10-'

27 .71158 x 10-2 .71159 x 10-2 1 x 10-"

Table I1. NEGATIVE EXPONENTIAL PROFILE, PR- RB MODES

Mode Exact K,, (i-') WKB K. (m-') Absolute
# Error (in-')

30 .61746 x 10-2 .61689 x 10-2 5.7 x 10-6

31 .57723 x 10-2 .57689 x 10-2 3.4 x 10-6

32 .53082 x 10-2 .53059 x 10-2 2.3 x 10-6

33 .47670 x 10-2 .47649 x 10-2 2.1 x 10-6
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IV. CONCLUSIONS AND RECOMMENDATIONS

The WKB approximations of acoustic normal modes seem to give results accurate
enough to be of practical use. Although WKB is inherently a high frequency approxi-

mation, meaning that it works better for higher frequency, the results from our tests
show that, even for frequencies around one Hertz, this technique has an appreciable

accuracy.

When applying the WKB algorithm for arbitrary sound speed profiles the determi-
nation of the class of each normal mode must be done carefully. Each class has different

formulae. There are a total of four classes in a single duct or channel environment.

A small weakness of the method is that the error in the WKB solution increases
when a turning point is very close to a boundary. However, the corresponding errors are

still very small for the exponential and hyperbolic profiles used in this study.

The exact analytical solutions to the Helmholtz Equation can also be used for
comparison to any other methods. These exact solutions are subject to pressure release
surface and rigid bottom boundary conditions. Exact solutions can also be found for
any boundary conditions. Specifically, we can maintain the pressure release surface
boundary condition, which is a good assumption, and use a non-rigid bottom boundary
condition.

Some difficulties were found when working with Bessel and Associated Legendre
Functions. The IMSL subroutines used for Bessel Function evaluation cannot handle
some orders and values of the argument. With respect to the evaluation of Associated

Legendre Functions, subroutines are not available in the IMSL libraries. Some Fortran

programs were coded to compute them. These programs also work only for certain
ranges of order, degree and arguments of the functions. Further programming work
concerning these transcendental functions is recommended.

WKB formulae for modes trapped in the water column over a non-rigid bottom were
derived in Appendix B although they are not implemented for this analysis. A general
mathematical expression for boundary conditions for normal modes is also presented in
Appendix B. The use of this mathematical expression is not a trivial matter because the
expression depends on the density and the sound speed profile of the sediment. Further

studies on using WKB algorithms for arbitrary bottom boundary conditions are recom-

mended.
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In this thesis only single duct;channel environments have been considered. Essen-

tially, we have ignored double duct,'channel problems. I lowever, the WKB approxi-

mation method has been applied to other nonacoustic but equivalent double

ductchannel problems (for example, transmission of electromagnetic waves through

potential barriers) with sucess (Bender and Orszag, 1978).

In conclusion, the WKB method allows for accurate and fast computation of normal

modes and their eigenvalues. In addition, it allows for storage of the results in terms of

only a few parameters for each mode.
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APPENDIX A. FIRST ORDER WKB THEORY

With

d4P= lKz2 Idz

the Helmholtz Equation becomes

d2Z' + d Ic2zn dZ7 +Z,= (A.1)
d 2 "Kzn dok do

This equation has some similarities with a Bessel Equation. Let us try a solution in the

form

zn oc F( b).

Substituting this trial solution form in (A. 1) we get

d2F + 1 dF + (1/2)2
do 2 4,Zd4) - 1F-- (A.2)

with

(d = +3 12_ 1 1 d2I Kzn

4 1K, 14 \ dz 2 iK,, 3  dz2

If r(z) is negligible, i.e., I r(z) I <1, (A.2) can be approximated as

d2F+ I dF F (1/2)21
d2 + 1 1 2 1F=O (A.3)

which is a Bessel Equation.

The general solution to (A.3), for K' > 0, is

F(O) = a'J112(0)+b' Y,12(4) (A.4)

where J,/2 and )'U2 are the order 1/2 Bessel Functions of the 1" and 2"d kind, respectively.

But since
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sin x

cos x

(A.4) becomes

sin + cosk
F(O) a abco

and thus

a sin q+b cosZ.(z) =
" K zn

If K' < 0, instead of (A.3) we would get the Modified Bessel Equation whose general

solution is given by

F(O) = a'g/2(0)+b'tj/2(0)

where K,, and 1,,2 are the Modified Bessel Functions. Since

K112(0) oC

e4o

,112(0) 0C _

we now have

ae-O+be'

and thus

Za 
4

(z)  
bae4
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Let us assume that there is a turning point at z = 0, K' > 0 for z > 0, K', < 0 for

z < 0 and near the turning point K, = yz. So, close to the turning point we have

O= IK. I dz = s y112 1zl312

03

with s -zI z 1, and after some algebra,

I dlK., I

I I d =(1 -

Using this in (A. 1) we get

+ z. = 0 (A.5)d462  3 0 d46

Let us now look for a solution near the turning point in the form

Z,,0> H 1'()

Substituting this solution form in (A.5) we get

d F _ _!_!F + _ F=_
d2F+ I dF I  (1/3)2 1

d 2  d 2  F=O

whose general solution is

F('k) = cIB ..113 ()+c 2B 13(0)

where B represents Bessel Functions. For K' > 0 they arc J-,, and J,,. For K' < 0 they
are L1 ,3 and 1,3. Relating Z. with F we obtain

Zn = ( 0) 1 )I3[cI B-11 3(&)+c 2B, 3(O)]

or

Z'=N/ 1 3 IzI c B -3 Y IzIl3/ 2 +CB,A-i'12 z)1312 (A.6)
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where the plus sign is for K' < 0 and the minus sign for K' > 0. A way to avoid the in-
convenience of sign switching is to use Airy Functions which aie related to B-,. 3 (see

Chapter 111, Section A).
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APPENDIX B. GENERAL BOUNDARY CONDITIONS

A. GENERAL FORMULA

Until now we have assumed that the boundary conditions are pressure release at the

surface and rigid bottom. The first one is a good assumption but the second one can be

far away from reality. Let us now present a general bottom condition formula for

normal modes that depends on the bottom characteristics.

The acoustic pressure due to the n" mode is

p, = Zn(z)Rn(r, O)et (B. 1)

The vertical component of the momentum equation relating p. to the vertical particle

velocity u,, in the nh mode is

P u .V -t" (B.2)

where p, is the water density and the bottom is assumed to be flat. Using (B.1) in (B.2)

we get

i dZ, i~
dz'. iJu,'"- Pi(O dz Rne (B.3)

At the bottom boundary, the requirement is that both p,, and s,, are continuous

across the water-sediment interface. In other words, the normal acoustic impedance

across the interface is continuous. The normal acoustic impedance associated with the
n" mode is

~ P (B.4)
ZNn - 2N

By using (B.1) and (B.3) in (BA) one can obtain as a general condition

-i-Pico Zn 2 = 0 (B.5)
SNn

if 2N, at the water-sediment interface is known from the sediment properties.
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Let us use a local plane wave approximation of the normal mode near z = II in the

water column. i.e..

Z'(z) = A,[e- iK. - h +ReiK"o -1l

where A, is a constant, R is the complex plane wave reflection coefficient and KHn is the

vertical wavenumber in water computed at the boundary (Clay and Medwin, 1977).

With this plane wave approximatio, one can easily show that (Kinsler et al., 1982)

2 Nn - P2C2b (B.6)
N C2b )2( C2b )2 2

Clb COW K

where the index I refers to water, 2 refers to sediment and b refers to the value at the

boundary. R is also known as the Rayleigh Reflection Coefficient which can be equated

as

P2  K22 n

R =( 2 + K2 z .

1 -I Kzn

where K2,., is the vertical wavenumber in the sediment layer and is given by

2 (
1
) 2

K2zn - 2 -K n
C2

and K,, is the usual vertical wavenumber in the water column (Kinsler et al., 1982).

Substituting (B.6) in (B.5) we can rewrite (B.5) as

(z P 'n - - K 2,.Z, 0 (..
dz P2 22f jzH 0

A more intuitive form for (B.7) is

dZ, .I -R (HZ,)= =0 (B.8)

As expected, for a rigid boundary (R = 1).
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and, for a pressure release boundary (R = -1),

(zI),=H = o

B. TRAPPED MODES IN THE WATER COLUMN

We will consider only modes that are trapped in the water layer in this WKB for-

mulation. This means that K2,, is purely imaginary or

K2z n  ifln

with P,, real and defined by

K 22 (B 9

C2

Substituting (B.9) in (B.7) we get

( dZ.- -f zZH=O . (B. 10)

Since (B.7) is a general boundary condition, (B. 10) is also general but is only appli-

cable to modes trapped in the water column. We will apply (B.10) to each class of

normal modes in the water column.

1. Class I

As usual we assume that there is a turning point at z - 2 with 0 < 1 < IL In the

exponential region (I < z < I) the solution is

Zn I cosh(4-0b) (B. 11)

with

S=f l I,' I dz

and
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n 2
2 Ct2

C'

As (B.l1) must satisfy (B.10), 0 must be

S H I KzIaz- tanh- I  d P2 I d(B.12)
+ 

nIKI

with fP, given by (B.9). The only difference relative to the rigid bottom case is expression

for b, All the other formulae remain unchanged.

2. Class Ii

In the oscillatory region, 1 < z < H, the solution is

z,1 = e sin cos+ (B.13)

with

z

and

,=I K2nldZ

(B.13) must satisfy (B.10), implying that

01+ D+E e-0,

.+ tan-' 2 0 (B. 14)

where D is defined in Chapter II, Equation (22),

Ol =f K2 ,dz

and
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E 2 (B.15)

Therefore, the characteristic equation following from (B. 14) is

JH d= (n- -h)-)

2

for D < 0, and

^ &=z n-" ir-a

for D > 0, where

e€l D+ E e-'O

a ~tan[~
-(D+E)e € ,

All the other formulae are identical to the rigid bottom case.

3. Class III

For this class the only difference relative to the rigid bottom case is that kb must

now be computed with (B.12).

4. Class IV

The solution over the entire ocean depth is

Z ," - ,I sin e

4 iKzn

with

To satisfy (B. 10) we require

5,



K z=nit- tan -~ D+E

for D > 0, and

JICdz = nir+ tan-~ D+E)

for D < 0, with E given by (B. 15). This is now the Class IV mode characteristic equation.
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APPENDIX C. FORTRAN PROGRAM WKBGEN

A. PROGRAM DESCRIPTION
The program WKBGEN is formed by a main program and several subprograms.

The main program evaluates the minimum sound speed and then controls the subpro-

grams. The inputs must be given in the PARAMETER statement. The inputs include

the ocean depth (H), acoustic frequency (F), the wavenumber increment used in the K,
search (DK), first mode (NMI) and last one (NMF) to be computed. The units in this
program are those of the MKS system. The input sound speed profile is specified using

the subprogram FUNCTION C(Z). SUBROUTINE TYPE evaluates the class of each

mode. SUBROUTINE CHARAC controls the search for K, and the turning points. The

appropriate characteristic equation is given by FUNCTION EQCHAR and the turning
points are evaluated by SUBROUTINE ZTURN. The auxiliary subprograms FUNC-

TION PHASE, FUNCTION FKZ2 and FUNCTION FKZ evaluate respectively the

phase integral, K2 and I K, I. The Airy Functions are computed by the FUNCTION's

AI(Z) and BI(Z) and their derivatives by FUNCTION's DAI(Z) and DBI(Z). These four

subprograms use the SUBROUTINE's MMBSJR and MMBSIR in the IMSL libraries
to evaluate the Bessel and Modified Besse! Functions, respectively.

As output, the mode numbers and the respective eigenvalues are printed on the
screen. These results, as well as the depths of the turning points, are also written in a file

whose name is specified in the CALL EXCMS statement at the begining of the main

program.
The numerical method used to solve for the characteristic equation and to find the

turning depths is the simple but safe Bisection Method (Gerald and Wheatley, 1989).

The method to compute integrals is the Trapezoidal Rule (Gerald and Wheatley, 1989).

Derivatives are evaluated by forward or backward finite differences (Gerald and

Wheatley, 1989).

B. PROGRAM LISTING
PROGRAM WKBGEN

C
C

C
C MAIN PROGRAM
C
C
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IMPLICIT REAL*8 (A-H,O-Z)
PARAMETER (H= F= DK= NMI= NMF=)

C
C
C

CALL EXCMS('FILEDEF 1 DISK WKBGEN DATA A')
OYI=8. DO*DATAN(1. DO)*F
ZEX-DMOD(H, 10. DO)

C
C
C

CS=C(O)
CB=C(H)

C
C
C

CM=99999. DO
DO Z=O.DOH-ZEX,1O.DO

CM=DMIN1CCM,C(Z))
END DO
CM=DMIN1(CM,C(H))

C
C
C

XKO=OM/CM
XKL=XKO

C
C
C

DO N=NMI,NMF
C

DO XKI=XKLO,DK
C

XKF=XKI +DK
CNI=OM/XKI
CNF=OM/XIKF
CALL TYPE(CNI,CS,CB,NTYPE)
CALL ZTURN(CNI,H,ZEX,NTYPE,Z1)Z12)
CALL ZTURN(CNF,H,ZEX,NTYPE,ZF1)ZF2)
CALL CHARAC(OM,HZEX,N,XKI,XKF)NTYPE,ZI1,ZI2,ZF1,ZF2,NSOL,XKSOL,

$ ZT1,ZT2)
IF (NSOL.EQ.1) GO TO 100

C
END DO

C
100 PRINT*,N,XKSOL

C
IF (NTYPE. EQ.1. OR. NTYPE. EQ. 2) THEN

WRITE (1,*) N,NTYPE,XKSOL,ZT1
ELSE IF (NTYPE.EQ.3) THEN

WRITE (1,*) N,NTYPE,XKSOL,ZT1,ZT2
ELSE

WRITE (1,*) N,NTYPE,XKSOL
END IF

C
XKL-XKSOL
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END DO
STOP
END

C
C
C

C
C
C

SUBROUTINE TYPE(CN,CS ,CB ,NTYPE)
REAL*8 CN,CS,CB

C
IF (CN.GT.CS.AND.CN.LT.CB) THEN

NTYPE1l
ELSE IF (CN. LT. CS. AND. CN. GT. CB) THEN

NTYPE=2
ELSE IF (CN. LT. CS. AND. CN. LT. CB) THEN

NTYPE=3
ELSE

NTYPE=4
END IF

C
RETURN
END

C
C
C

C
C
C

SUBROUTINE CHARAC(OMH,ZEX,NM,XI ,XF,NT,ZI1,ZI2,ZF1,ZF2,NSOL,XSOL,
$ Z21,Z22)

IMPLICIT REAL*8 (A-H,Q-Z)
XSOIL=9999. DO
NSOL1l
FI=EQCHAR(NM,NT,H,OM,XI ,ZI1 ,Z12)
FF=EQCHAR( NM NT ,HGMXFZF1, ZF2)
IF ((FI*FF).GT.0. DO) THEN

NSOL-O
GO TO 100

ELSE IF (FI.EQ.O.DO) THEN
XSOL=XI
GO TO 500

ELSE IF (FF.EQ.O.DO) THEN
XSOL-XF
GO TO 500

ELSE
CONTINUE

END IF
DO 200 N-1,500
XM2=(XF+XI)/2. DO
IP(N.EQ.1) GO TO 50
IF ((X,%2-XM1).EQ.O.DO) THEN

XSOL=XM2
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GO TO 500
END IF

50 XM1=XM2
GN2=OM~/XM2
CALL ZTURN(CN2,11,ZEX,NT,Z21,Z22)
F2=EQCHAR(NM,NT,HOM,X2,Z21 ,Z22)
IF ((F2*FF).LT.O.DO) THEN

XI=XM2
ELSE

XF=XM2
FF=F2

END IF
200 CONTINUE
100 CONTINUE
300 CONTINUE

RETURN
END

C
C
C

C
C
C

SUBROUTINE ZTURN(CN,H,ZEX,NTr,ZT1,ZT2)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 NM
ZT1=99999. DO
ZT2=99999. DO
DO 100 D= 0. DQ,H,10. DO
XF=D+10. DO
XI=D
FI=C(XI )-CN
FF=C(XF) -CN
IF ((FI*FF).GT.O.DO) THEN

GO TO 100
ELSE IF (FI. EQ.0. DO) THEN

XSOL-X I
GO TO 500

ELSE IF (FF.EQ.O.DO) THEN
XSOLXF
GO TO 500

ELSE
CONTINUE

END IF
DO 200 N=1,500
XM2=(XF+XI)/2. DO
IF(N. EQ. 1) GO TO 50
IF ((XM2-XM1).EQ.0.DO) THEN

XSOL=XI2
GO TO 500

END IF
50 XII1=XM2

F2=C( XM2) -CM
IF ((F2*FF).LT.0. DO) THEN

XI=XM2

57



ELSE
XF=XM2
FF=F2

END IF
200 CONTINUE
100 CONTINUE
500 CONTINUE

ZT1=XSOL
IF (NT.EQ.3) THEN
DO 110 D= H,O.DO,-1O.DO
XF=D-1O. DO
XID
FI=C(XI) -CM
FF=C(XF) -CN
IF ((FI*FF).GT.0.DO) THEN

GO TO 110
ELSE IF (FI.EQ.0.DO) THEN

XSOL=XI
GO TO 510

ELSE IF (FF.EQ.0.DO) THIEN
XSOL=XF
GO TO 510

ELSE
CONTINUE

END IF
DO 210 N=1,510
XM2=(XP+XI)/2. DO
IF(N. EQ. 1) GO TO 51
IF ((XM2-XM1).EQ.0.DO) THEN

XSOL=XM2
GO TO 510

END IF
51 XM1=XM2

F2=C(XM2)-CN
IF ((F2*FF).LT.O.DO) THEN

XI=XM2
ELSE

XF=XM2
FF=F2

END IF
210 CONTINUE
110 CONTINUE
510 CONTINUE

ZT2=XSOL
END IF
RETURN
END

C
C
C

C
C
C

FUNCTION EQCHAR(NM,NT,H,OM,XI,ZT1,ZT2)
IMPLICIT REAL*8 (A-H,O-Z)
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PI=4. DO*DATAN( 1. DO)
D=(FKZ(OM,XI,H)-FKZ(OM,XI,H-5.DO))/(1O.DQ*FKZ(OM,XI,H)**2)
IF (DABS(D).GT. .999D0) THEN

D1=(D/DABS(D))*. 999D0
ELSE

D 1=D
END IF

C

IF (NT. EQ. 1) THEN
EQCHAR=P{ASE(O. DO,ZT1,OM,XI)-(NM-. 25D0)*PI
IF (H-ZT1.GT.1O.DO) THEN
PHIB=PHASE( ZT1,H,OM ,XI) -DATANH( Dl)
EQCI{AR=EQCHAR+DATAN(DEXP( -2. DO*PHIB)/2. DO)
ELSE
GANM=(FKZ2(OM,XI ,H) -FKZ2(OM,XI ,ZTl))/(ZTl -H)
ZH=(GAM/DABS(GAM))*DABS(GAM)**(1. DO/3. DO)*(H-ZT1)
A=DBI( ZH)
B=DAI(ZH)
EQCHAR=EQCHAR-DATAN( B/A)

END IF
C

ELSE IF (NT.EQ.2) THEN
EQCHAR=PHASEIZT1 ,H,OM,XI)
IF(ZT1.GT. 1O.DO) THEN
PHIS=PHASE(O. DO,ZTl,OM,XI)
ALF1=DEXP(PHIS)+D*eDEXP( -l.DO*PHIS)/2. DO
ALF2=((DEXP(-l.DO*PHIS)/2.DO)-D*DEXP(PHIS))
IF (DLQG1O(DABS(ALFl))-DLOG1O(DABS(ALF2)). GT. 60.DO) THEN

IF (D. GE.O0) THEN
ALF=PI/2. DO

ELSE
ALF=-1. DO*PI/2. DO

END IF
ELSE

ALF=DATAN(ALFl/ALF2)
END IF
IF (D.GE.O.DO) THEN

EQCHAR=EQCHAR-(NM-1. 25D0)*PI+ALF
ELSE

EQCHAR=-EQCHAR-(NM-. 25DO)*PI+ALF
END IF

ELSE
GAMl=(FKZ2(OM,XI,ZT1)-FKZ2(OM,XI,O.DO))/ZT1
ZS=(GAM/DABS(GAM) )*DABS(GAM)**(1. DO/3. DO)
A=BI(ZS)
B=AI(ZS)
IF (D. LT.0. DO) THEN

EQCHAR=EQCKAR-(NM-. 25DO)*PI+DATAN((A+D*B)I(B-D*A))
ELSE

EQCHAR=EQCHAR-(NM-1. 25DO)*PI+DATAN((A+D*B)/(B-D*A))
END IF
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END IF
C
C
C

ELSE IF (NT. EQ. 3) THEN
IF (H-ZT2.GT.1O.DO) THEN
PHIB=PHASE(ZT2 ,H,OM,XI) -DATANH(Dl)
ALF2=DATAN(DEXP( -2. DO*PHIB)/2. DO)

ELSE
GAII=(FKZ2(OM,XI ,H) -FKZ2(OM,XI ,ZT2))/(ZT2-H)
ZH=(GAM/DABS(GAN) )*DABS(GAN)**(1. DO/3. DO)*(H-ZT2)
A=DBI(ZH)
B=-1.DO*DAI(ZH)
ALF2=DATAN( B/A)

END IF
IF(ZT1. GT. 10. DO) THEN
PHIS=PHASE(O. DO,ZT1 ,OM,XI)
ALF1=DATAN(DEXP( -2. DO*PHIS)/2. DO)

ELSE
GAN=(FKZ2(OM,XI,ZT1)-FKZ2(OM,XI,O. DO))/ZT1
ZS=(GAM/DABS(GAI) )*DABS(GAN)**(1. DO/3. DO)*ZT1
A=BI(ZS)
B=AI(ZS)
ALP 1DATAN( B/A)

END IF
EQCHAR=PHASE( ZT1 ,ZT2 ,OM,XI)
EQCHAR=EQCHAR-(NM-. 5D0)*PI -ALP 1+ALF2

C
C
C

ELSE
EQCHAR-PHASE(O. DO,H,OM,XI)
IF (DABS(D).GT.1.D-60) THEN
E=1. DO/D
IF(D.GT.O.DO) THEN

EQCI{AR=EQCHAR-NM*PI+DATAN( E)
ELSE

EQCIAREQCHAR-NM*PI -DATAN( E)
END IF
ELSE

EQC1{AR=EQCIEAR-NM*PI+PI/2. DO
END IF

C
C
C

END IF
C

RETURN
END

C
C
C

C
C
C
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FUNCTION PHASE(A,B,OM,XKN)
IMPLICIT REAL*8 (A-H,O-Z)
XNL=DINT((B-A)/5. DO)
NL=-NINT( XNL)
EX=DMOD((B-A) ,5. DO)
PHASE=O. DO
DO I=1,NL

XI=DBLE( I)
PHASE=PIIASE+(FKZ(OM,XKN,(XI-1. DO)*5. DO+A)

$ +FKZ(OM,XKN,XI*5. DO+A) )*2. 5D0
END DO
PIASE=PHASE+(FKZ(OM,XKN ,XNL*5. DO+A)

$ +FKZ(OM,XKN,B))*EX/2.DO
RETURN
END

C
C
C

C
C
C

FUNCTION FKZ(OM,XKN,Z)
REAL*8 FKZ,OM,XKN,Z
FKZ=(OM/C( Z) )**2-.XKN**2
FKZ=DSQRT(DABS(FKZ))
RETURN
END

C
C
C

C
C
C

FUNCTION FKZ2(OM,XKN,Z)
REAL*8 FKZ2,OM,XKN,Z
FKZ2=(OM/C(Z) )**2..yjN**2
RETURN
END

C
C
C

C
C
C

FUNCTION C(Z)
REAL*8 C,Z

RETURN
END

C
C
C
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C
C
C

FUNCTION AIMZ
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 J13,JM13,113,IM13
DIMENSION RJ(2) ,WK(4) ,B(2)

C
C
C

IF (Z.EQ.O.DO) THEN
A=. 35502805D0
RETURN

ELSE IF (Z. LT.0. DO) THEN
C
C
C

ARG=2. DO*(DSQRT(-l. DO*Z)**3)/3. DO
N=2

C
C
C

ORDER=2. DO/3. DO
CALL MMBSJR(ARG,ORDER,N,RJ,WK,IER)
JM113=4.DO*RJ(l)/(3. DO*ARG)-RJ(2)

C
C
C

ORDER1l. DO/3. DO
CALL MMBSJR(ARG,ORDER,N,RJ,WKSIER)
J13=RJ( 1)

C
C
C

AI=DSQRT( -1.DO*Z)*(J1113+J13)/3. DO
C
C
C

RETURN
ELSE

C
C
C

ARG=2. DO*(DSQRT(Z)**3)/3. DO
ORDER-2. DO/3. DO
NB=2
IOP',1=

C
C
C

CALL MMBSIR(ARG,ORDER,NB,IOPT,B,IER)
IM13=4. DO*B( 1)/(3. DO*ARG)+B(2)

C
C
C

ORDER=1. DO/3. DO
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CALL MMBSIR(ARG,ORDER,NB,IOPT,B,IER)
113B( 1)

C
* C

C
AI=DSQRT(Z)*(IM13-Il3)/3. DO
RETURN

* C
C
C

END IF
C
C
C

END
C
C
C

C
C
C

FUNCTION BI(Z)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 J13,JM13,I13,1M13
DIMENSION RJ(2),WK(4),B(2)

C
C
C

IF (Z. EQ. 0. DO) THEN
BI=. 61492663D0
RETURN

ELSE IF (Z.LT.O.DO) THEN
C
C
C

ARG=-2. DO*(DSQRT( -1.DO*Z)**3)/3. DO
N=2

C
C
C

ORDER=2. DO/3. DO
CALL MNBSJR(ARG,ORDER,N,RJ,WK,IER)
JM13=4. DO*RJ( 1)/(3. DO*ARG)-RJ(2)

C
C
C

ORDER=1. DO/3. DO
CALL MMBSJR(ARG,ORDER,N,RJ,WK,IER)
J13=RJ( 1)

C
C
C

BI=DSQRT( -1.DO*Z/3. DO)*(JM13-Jl3)
C
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C
C

RETURN
ELSE

C
C
C

ARG=2. DO*(DSQRT(Z)**3)/3. DO
ORDER=2. DO/3. DO
NB=2
IOPT=l

C
C
C

CALL MMBSIR(ARG,ORDER,NB,IOPT,B,IER)
1M13=4. DO*B( 1)/(3. DO*ARG)+B(2)

C

C
ORDER=1. DO/3. DO
CALL MMBSIR(ARG,ORflER,NB,IOPT,B,IER)
I13=B(l)

C
C
C

BI=D)SQRT(Z/3. DO)*(1M13+I13)
RETURN

C
C

END IF
C
C

C

C
C

C

C
C

FUNCTION DAI(Z)
IMPLICIT REALI*8 (A-H,O-Z)
REAL*8 J23 ,JM23,I23, 1M23
DIMENSION RJ(2),WK(4),B(2)

C
C
C

IF (Z. EQ.0. DO) THEN
DAI=-. 25881940D0
RETURN

ELSE IF (Z.LT.O.DO) THEN
C
C
C
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ARG=2. DO*(DSQRT( -1.DO*Z)**3)/3. DO
N=2

C
C
C

QRDER=1. DO/3. DO
CALL MIBSJR(ARG,ORDER,N,RJ,WK,IER)
JM23=2.DO*RJ( 1)/(3. DO*ARG) -RJ( 2)

C
C
C

ORDER=2. DO/3. DO
CALL NXBSJR(ARG,ORDER,N,RJ,WK,IER)
J23=RJ( 1)

C
C
C

DAI=Z*(JM23-J23)/3. DO
C
C
C

RETURN
ELSE

C
C
C

ARG=2. DO*(DSQRT(Z)**3)/3. DO
ORDERI. DO/3. DO
NB=2
IOPT1

C
C
C

CALL MMBSIR(ARG,ORDER,NB,IOPT,B,IER)
1M23=2. DO*B(1)/(3. DO*ARG)+B(2)

C
C
C

ORDER=2. DO/3. DO
CALL MMBSIR(ARG,ORflER,NB,IOPT,B,IER)
123=B(l1)

C
C
C

DAI=-1.DO*Z*( 1M23-123)/3. DO
RETURN

C
C
C

END IF
C
C
C

END
C
C
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C

C
C
C

FUNCTION DBI(Z)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 J23,JM23,I23,1M23
DIMENSION RJ(2),WK(4),B(2)

C
C
C

IF (Z.EQ.O.DO) THEN
DBI=. 44828836D0
RETURN

ELSE IF (Z.LT.O.DO) THEN
C
C
C

ARG--2. DO*(DSQRT(-1. DO*Z)**3)/3. DO
N=2

C
C

ORDER=1. DO/3. DO
CALL MMBSJR(ARG,ORDER,N,RJ,WK,IER)
JM23=2. DO*RJ( 1)/(3. DO*ARG)-RJ(2)

C
C
C

ORDER=2. DO/3. DO
CALL MMBSJR(ARG,ORflER,N,RJ,WK,IER)
J23=RJ( 1)

C
C
C

DBI=-1. DO*Z*(JM23+J23)/DSQRT(3. DO)
C
C
C

RETURN
ELSE

C
C
C

ARG=2. DO*(DSQRT(Z)**3)/3. DO
ORDER=1. DO/3. DO
NB=2
IOPT=1l

C
C
C

CALL MMBSIR(ARG,ORDER,NB,IOPT,B,IER)
IM23=2. DO*B( 1)1(3. DO*ARG)+3(2)

C
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C
C

ORDER=2. DO/3. DO
CALL MIMBSIR(ARG,ORDER,NB,IOPT,B,IER)
123=B( 1)

C
C
C

DBI=Z*( 1M23+123)/DSQRT(3. DO)
RETURN

C
C
C

END IF
C
C
C

END
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